Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice
نویسندگان
چکیده
BACKGROUND Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS Both effector (CD25(-), FoxP3(-)) and suppressor (CD25(+), FoxP3(+)) CD4(+) T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4(+) subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+)CD25(-) T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.
منابع مشابه
سلولهای T تنظیمی: انواع، تولید و عملکرد
T lymphocytes have been characterized to different subsets such as cytotoxic T, Thelper1 (Th1), Th2, Th3, Th9, Th17, and regulatory T cells. Each of these subsets have specific function which distinct them from other lymphocytes. Regulatory T lymphocytes are effective cells in immune system that play an important role in cancers, autoimmune and infectious diseases. Two main subsets of regulator...
متن کاملFunctional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes.
OBJECTIVE In this study, we asked whether a possible quantitative or qualitative deficiency in naturally occurring Foxp3(+)CD4(+) regulatory T-cells (nT(reg)), which display potent inhibitory effects on T-cell functions in vitro and in vivo, may predispose to the development of type 1 diabetes. RESEARCH DESIGN AND METHODS We assessed the frequency and function of Foxp3(+) nT(reg) cells in pri...
متن کاملActivation-Induced Apoptosis in T cells: Effect of Age and Caloric Restriction
We have previously shown that the proliferative response of T cells to antigenic or mitogenic stimulus decreased with age and that caloric resection (CR) attenuated the age-related decline in proliferation and IL-2 expression. Because activation-induced apoptosis is known to regulate cell proliferation and eliminate the high number of activated cells during an immune response, it was of interes...
متن کاملAntigen-Experienced CD4lo T Cells Are Linked to Deficient Contraction of the Immune Response in Autoimmune Diabetes
Following proper activation, naïve "CD4lo" T cells differentiate into effector T cells with enhanced expression of CD4 -"CD4hi" effectors. Autoimmune diabetes-prone NOD mice display a unique set of antigen-experienced "CD4lo" T cells that persist after primary stimulation. Here, we report that a population of such cells remained after secondary and tertiary TCR stimulation and produced cytokine...
متن کاملImpact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice
Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011